
www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

20

WS-Data Model: A Data Model for Web Services Composition
and Optimization

Chien-Hsiang Lee and San-Yih Hwang
Department of Information Management

National Sun Yat-sen University
Kaohsiung 80424, Taiwan

syhwang@mis.nsysu.edu.tw

Abstract

Recent enthusiasm in service science attracts more attention on the design and analysis of
service systems. A service system, from the engineering point of view, can be regarded as the
interactions between various service elements, and service elements can be innovatively
assembled to provide customizable services. To embody service elements in service-oriented
architecture, Web services that conform to industrial standard have been proposed and widely
adopted, and many researches are devoted into automatic Web service composition. However,
most of these researches focus on control flow specification and enforcement. Data mismatch
between Web services appears as an orthogonal problem that can be solved using XML-based
query languages. We argue that greater optimization is possible if Web service composition can
be considered into data manipulation operations. A proposed model, the WS-data model, focuses
on data exchanges in composing Web services. Several operators with varying properties can
compose Web services and manipulate their input and output data. Experiments conducted on
the Amazon Cloud platform show that these operators’ properties can help identify a more efficient
way to realize a complex task, expressed according to the proposed WS-data model.

Keywords: Optimization of Services Composition, Web Services Interoperability, Operational
Model, Data Model

1

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

21

1. Introduction
With the emergence of service science, or
called service science, management,
engineering, and design (Spohrer and Kwan,
2009), there is a growing trend to look into
services in a scientific and systematic way.
Unlike most of previous studies that focus
more on the customization aspect of services
and service encounters, service science
intends to systematically examine the entire
service system that involves the interaction of
various service elements from both front and
back stages (Glushko and Tabas, 2009).
Service encounters between service
elements can then be regarded as information
exchange. The abstract service elements can
be innovatively assembled to provide
customizable services, and their modular
composition eases the task of analyzing the
value that the service system delivers
(Caswell et al., 2008). The standardization
also helps reduce variability and foster fast
mass customization.

In response to the demand of constructing
agile service systems, various Web service
standards have been proposed to describe a
service (e.g., WSDL (Christensen et al.,
2001)), to specify the format of message
exchange (e.g., SOAP (Gudgin et al., 2007)
and RESTful (Fielding, 2000)), and to
compose services (e.g., BPEL (Jordan and
Evdemon, 2007) and BPMN (OMG, 2013)).
Innovative applications can be developed by
integrating several Web services into
composite versions. Previous research into
Web service composition mostly has focused
on the specification and enforcement of the
invocation order of the constituent Web
service operations and assumed that output
messages serve, perhaps with minor
modifications, as input messages for a
succeeding Web service. Theoretical process
meta-models, such as Petri net, finite state

machine, -calculus, and linear temporal logic,
describe the invocation order in a process,
which enables subsequent analysis and
validation of the system (Berardi et al., 2005;
Gerede et al., 2004; Lucchi and Mazzara,
2007; Narayanan and McIlraith, 2002;
Ouyang et al., 2007; Sloan and Khoshgoftaar,

2009; Tan et al., 2009). However, the syntax,
structure, or semantics of messages
generated by one Web service operation may
not exactly match those required by another
operation. For example, an information
enquiry service, such as Amazon Web
Services (AWS) or Google Code, might return
a list of items that satisfy a certain enquiry
condition. Each retrieved item then may be
processed by another Web service operation.
Therefore, a proper extraction of data from the
output of a previous Web service operation is
critical to the successful invocation of the next
operation. In some applications, the required
input data may combine the outputs of
multiple Web service operations. Therefore,
the capability to manipulate data is essential
for the successful composition of Web
services.

XQuery, proposed by W3C, has become the
de facto standard for manipulating XML
documents, but it is limited to XML data and
does not involve Web services. In contrast,
we propose a model that considers both the
workflow of Web services and the data
mediation between Web services. We also
take into account the possibility that a task
might be realized by more than one set of
Web services, called an abstract service in
previous research (Thomas, 2007). This
concept is a major principle of service-
oriented architecture as a means to ease
process design. An abstract service can have
several implementations with equivalent
functionalities. Previous works mostly regard
an abstract service as a black box; we
examine each implementation in an attempt
to optimize the entire process, with the
ultimate goal of identifying an efficient means
to execute the process through a workflow of
constituent Web service operations and
methods for exchanging data.

Consider the stock replenishment process in
Figure 1. A supplier needs to determine the
quantity of stock to replenish and the
corresponding prices of products, using the
sales and inventory information of each store.
The entire process requires three Web
services: StoreInfo, StockService, and

2

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

22

PriceService, which maintains sales and
inventory information for each store, performs
replenishment planning, and which
determines the price of each item respectively.
StoreInfo provides the operation getSalesInv()
that returns sales and inventory information of
a list of items. StockService includes the
operation replenish() that takes as input the
sales and inventory information of an item and
returns the amount of supply to replenish.
PriceService offers an operation pricing() that
determines the unit price of an item based on
the refilled quantity. The entire process
consists of the four steps shown in Figure 1.

The stock replenishment process can be
manually specified using BPEL and XQuery
(or any other process and data transformation
languages), as shown in the right-hand side of
Figure 1. A straightforward way to realize this
process, which we summarize in Figure 2(a),
performs the four tasks sequentially. However,
such a sequential execution delays each task
execution until the previous task has been
completed, which hinders overall
performance. Figure 2(b) depicts another
execution plan, in which each item returned
by StoreInfo.getSalesInv() gets processed to
determine replenishment in a pipelined

replenishStock

Select Items

getSalesInv()

determinePrice

…
<bpel:forEach …>
 …
 <bpel:sequence>

 …
 <bpel:invoke operation=”replenish” … />
 …
</bpel:sequence>

</bpel:forEach>

…
<bpel:forEach …>
 …
 <bpel:sequence>

 …
 <bpel:invoke operation=”pricing” … />
 …
</bpel:sequence>

</bpel:forEach>

: single-value SOAP message

: multi-values SOAP message

 : Data transformation

: Atomic Web service invocation

 : Composite Web service invocation

<?xml version="1.0"?>
<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/e
nvelope/">

 <soapenv:Body>
for $x in doc("ReplenishStockResponse.xml")/part
where $x/part/prod/qty>0
return <prod id=”{data($x/part/prod/pno)}”>
 <Qty>{data($x/part/prod/qty)}</Qty>
 </prod>
....

</soapenv:Envelope>

: The implementation

Figure 1 - Sample Stock Replenishment Process in BPEL and XQuery

3

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

23

manner. The subsequent processing of each
item also can be optimized by switching or
combining some data manipulation
operations, similar to relational database
query optimization (Ullman, 1989). The
execution plan in Figure 2(b) thus may yield
better performance than that in Figure 2(a).

The model we propose describes a workflow
of Web service operations and their data

exchanges by including the Web service
operations, XML documents required or
produced by the Web service operations, and
the operators for manipulating them. The WS-
data model thus resembles a relational model
but also has unique features that demand
several novel operators. We outline
transformation rules that pertain to the set of
proposed operators and show that a Web

4

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

24

service composition expressed using the WS-
data model can be optimized by applying
these rules, which produce a more efficient
execution plan.

In Section 2, we review previous Web service
composition and XML algebra research.
Section 3 presents the WS-data model and
defines operators for manipulating the
elements in the model. After describing our
proposed approach for optimizing a WS-data
expression, in Section 4, we evaluate this
approach using an emulation performed on
Amazon Cloud. Section 5 contains the
experimental results. In Section 6, we
summarize our findings and offer some
research directions.

2. Literature review
Web service composition is a key research
topic for services computing. The emergence
of the process language BPEL has allowed for
the manual composition of Web services, yet
automatic Web service composition remains
imperative to deal with the continual evolution
of Web services. Most prior research treats
automatic Web service composition as a
search problem in a state space, such that the
execution of a Web service transits from one
state to another, and the goal is to find an
efficient plan that leads from the initial to some
final state. Several planning techniques
attempt to tackle this problem, such as
forward/backward search (Akkiraju et al.,
2006; McDermott, 2002; Paganelli and
Parlanti, 2013; Park and Park, 2008),
hierarchical task network planning (Sirin et al.,
2004), planning based on model checking
(Pistore et al., 2005; Zou et al., 2014), and
planning based on Markov decision
processes (Chen et al., 2009; Doshi et al.,
2004). I/O messages of Web services in these
works are often considered as variables in
states or predicates and used for determining
compatible Web services; yet the
dependency between messages are seldom
considered.

In fact, the problem of data dependency
between services can be traced back to the
enthusiastic research on model management
in the 1980s, in which a model consists of a

number of operators, each of which
transforms a set of data objects to another
subject to some assertions (Dolk and
Konsynski, 1984). Thus, a model can be, in
modern terminology, understood as a service.
The focus in this line of research is how to
construct a model management system
(MMS) in order to support group decisions
(T.P. Liang, 1988). Of the various issues
pertaining to the development of a MMS, how
to automatically select and integrate a subset
of models so as to meet the requirement of a
new and larger model, called automatic
modelling, had attracted a lot of researches
(T.P. Liang and Jones, 1988). Many graph-
based models have been proposed for
automatic modelling, e.g., entity relationship
diagram (Bonczek et al., 1980), graph (T.P.
Liang and Jones, 1988), and Meta-graph
(Basu and Blanning, 1998, 2000). The goal is
to identify a “good” process of models given a
source and a target sets of data objects.
However, details about data objects and their
potential mismatch are not addressed in these
works.

Some more recent works focus on data
dependency between services for composing
services (Gu et al., 2008; Q. A. Liang and Su,
2005; Xia and Yang, 2013; Zeng et al., 2008).
Liang and Su (Q. A. Liang and Su, 2005) use
an AND/OR graph to represent dependency
among data and operation nodes, which
originate from Web services in some service
categories. A bottom-up search strategy can
reveal a complete solution subgraph of the
AND/OR graph with minimum cost. Gu et al.
(Gu et al., 2008) extend their work by
distinguishing the instance level from the
abstract level in an enhanced service
dependency graph. They also identify
cardinality relationships of messages
exchanged between two operations and
suggest using XSLT or XPath for the attribute
transformation. Zeng et al. (Zeng et al., 2008)
define three rules, forward-chaining,
backward-chaining, and data flow, to indicate
the preconditions of a task, the effects after
executing it, and the data dependency among
tasks, respectively. Their rules-inference
approach constructs qualified execution plans

5

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

25

and measures weighted QoS scores of the
plans to identify the best plan. However,
above studies ignore message mismatch
issues, despite their importance for Web
services in the real world, which often are
developed by different providers without
common standards for defining exchanged
messages.

Messages that are semantically equivalent
may differ in their structures and values. For
example, an address element may appear as
a single string or a combination of multiple
strings, such as street, city, and state. Another
example is the price element that could be
based on different currencies. Such
heterogeneities between source and target
messages must be resolved to support
sensible interoperations of Web services.
Previous works resolve message mismatch
issue by adapting source message to fit target
schema. There are two approaches:
identifying predefined conversion rule
according to semantic heterogeneity (X. Li et
al., 2013; Mrissa et al., 2007; Nagarajan et al.,
2007) and generating conversion script in
XSL through measuring message similarity
(Boukottaya and Vanoirbeek, 2005; Lecue et
al., 2008). In the former approach, a message
element is annotated with the corresponding
concept of ontology while the conversion rules
between different concepts are defined in
advance. The semantic heterogeneity
between two messages can be identified
using ontology matching and message
adaptation can be realized by applying
predefined conversion rules. Nagarajan et al.
use a set of annotation attributes, provided by
SAWSDL, to map the elements in WSDL to
external ontology and develop conversion
rules between ontology concepts and
message elements. As a result, the
specification of Web services in WSDL
contains semantic annotations for message
transformation. They propose a middleware
architecture for invoking Web services, in
which a data mediation module intercepts
source SOAP body and transforms it into
target SOAP body according to semantic
annotation in WSDL (Nagarajan et al., 2007).
However, a complex ontology that involves a

large set of concepts causes explosion of
conversion rules between different concepts.
To reduce the complexity of ontology, some
works abstract a small set of generic concepts
and differentiate the variety by means of
contexts. Mrissa et al. (Mrissa et al., 2007)
enrich domain ontology with contextual
information by attaching context modifiers to
each concept. Message elements in WSDL
can be annotated with concepts of domain
ontology and their corresponding context
modifier. They also propose a mediation
process by which a BPEL process can be
analyzed and additional mediator Web
services can be automatically incorporated
into the process to facilitate message
transformation. A similar strategy is adopted
by Li et al.(X. Li et al., 2013), but they applied
SAWSDL to annotate message elements.
They improved the generation of conversion
rules by considering composite conversion
and providing additional implementation
methods, such as XPath functions.

In contrast to the first approach, the second
approach generates conversion script
according to structure differences between
message schemas (Boukottaya and
Vanoirbeek, 2005; Lecue et al., 2008). The
difference is detected by similarity measuring
approach. Algergawy et al. (Algergawy et al.,
2010) aggregate two similarity measures,
namely internal element similarity and
external element similarity. Internal element
similarity considers the features of message
element, such as tag name, cardinality, data
type, and annotation information. External
element similarity focuses on the structure of
message, such as ancestor path, children
elements, leaf nodes, and sibling elements.
They also proposed weighted-sum and
nonlinear aggregation methods by which
several experiments were conducted to
demonstrate that nonlinear combination
outperforms linear method and the
recommendation values for similarity
threshold are between 0.4 to 0.6. Boukottaya
and Vanoirbeek (Boukottaya and Vanoirbeek,
2005) adopted a similar approach for
measuring element similarity to match
compatible elements between two XML

6

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

26

schemas. They proposed a matching process
to automatically generate XSLT scripts by
analyzing structural differences between
compatible elements. Based on the work of
Boukottaya and Vanoirbeek, Lecue et al.
(Lecue et al., 2008) incorporate semantic
similarity into matching process to measure
similarity between message schemas of
interacting Web services and produce XSL
transformations that reconcile data
heterogeneity in Web service interoperations.

These studies all employ XQuery, XSLT,
XPath, or user-defined functions implemented
as Web services for the data transfer between
Web services. To achieve efficiency in this
data transformation, algebraic operations
help manipulate the XML documents; even
the input and output messages of Web
service operations are XML documents.
Jagadish et al. (Jagadish et al., 2001)
therefore represent XML elements as data
trees and propose a tree algebra, called TAX,
that includes selection, projection, product,
and grouping operators to retrieve desired
elements from XML documents. They also
show that any XQuery statement can be
translated into an expression in TAX. Magnani
and Montesi (Magnani and Montesi, 2006)
introduce a general abstract data model to
accommodate both relational and XML data.
They confirm the validity of several
equivalence rules, which are equally
applicable to the query optimization of XML
data. In addition, Frasincar et al. (Frasincar et
al., 2002) propose three types of operators to
manipulate XML documents and adopt a
heuristic algorithm that employs 14
equivalence rules to transform a query tree
into an optimized query tree.

Although previous research has paved the
way for automatic Web service composition
and resolution of data exchange between
Web services, the global optimization of the
entire execution plan involving data
transformation is seldom addressed. Some
works, however, address the data mismatch
problem specifically for adjacent Web service
execution. Gu et al. (Gu et al., 2008) discuss
the cardinality mapping problem; for example,
in the many-to-one relationship, each item in

a set returned by a Web service operation
must be fed into another Web service
operation, in a phenomenon called repeated
invocation. The service dependency graph
can be enhanced to specify the repeated
invocation, but no execution mechanism
exists. To solve the problem of repeated
invocation, Srivastava et al. (Srivastava et al.,
2006) propose pipelined parallelism:
Execution threads for Web service operations
are launched, and a Web service operation is
invoked immediately after the input is ready.
Because all Web service operations are
executed in parallel, the cost of the execution
plan can be determined by the Web service
operation that provides the maximum
execution time. The authors therefore
propose a bottleneck cost metric, combining
message selectivity and Web service
operation execution time, to evaluate the
execution costs of different execution plans
and choose the optimal one. In addition to
repeated invocation and pipelined parallelism,
our approach incorporates more data
manipulation operators that optimize the
execution of Web services–based workflows
systematically.

3. WS-data model
Message exchange between SOAP-based
Web services uses an XML format. An XML
document is intrinsically a tree, as shown in
existing XML data models (Fernandez et al.,
2007). We follow the same practice.

3.1. WS-data tree and forest

Definition 1: (WS-data node) A WS-data
node is a tuple e = (name, txt, A), where name
identifies the node, txt is its textual content,
and A is a set of associated attribute-value
pairs. A WS-data node (name, txt, A)
corresponds to an element in an XML
document, where name, txt, and A represent
the tag name, textual content, and attributes
of the element, respectively.

Definition 1: (WS-data tree) A WS-data tree
of an XML document D is an ordered tree T of
WS-data nodes that correspond to elements
in D. The WS-data nodes in T preserve the

7

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

27

same parent–child relationship of elements in
D, and the order among children of each node
in T follows that in D.

Figure 3 shows an example (response) SOAP
message that contains inventory data. For
simplicity, we focus on the <body> part of the

message, which can be represented as a WS-
data tree, as in Figure 4

Definition 3: (WS-data subtree) Given a WS-
data tree T = (V, E), we can construct a WS-
data subtree from T by selecting a WS-data

node rV, which serves as the root of the
subtree.

 <?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>
 <ns1:ListProductInvResult xmlns:ns1="http://www.nsysu.edu.tw/sample/">

 <ns1:Merchant>Acer</ns1:Merchant>
 <ns1:Year>2008</ns1:Year>
 <ns1:Week>50</ns1:Week>

 <ns1:ProductInv Promotion=’Y’>
 <ns1:SKU>1416549714</ns1:SKU>

<ns1:Category>Laptop Computer </ns1:Category>
 <ns1:Name>Acer Aspire One 150-1126</ns1:name>

 <ns1:WeekInv>
 <ns1:BOW>5</ns1:BOW>
 <ns1:EOW>3</ns1:EOW>
 </ns1:WeekInv>
 </ns1:ProductInv>

 <ns1:ProductInv Promotion=’N’>
 <ns1:SKU>1416549725</ns1:SKU>
 <ns1:Category>Laptop Computer </ns1:Category>

<ns1:Name>Acer Aspire 7726-6307</ns1:name>
 <ns1:WeekInv>
 <ns1:BOW>4</ns1:BOW>

 <ns1:EOW>2</ns1:EOW>
 </ns1:WeekInv>
 </ns1:ProductInv>
 <ns1:ProductInv Promotion=’Y’>
 <ns1:SKU>1416549728</ns1:SKU>
 <ns1:Category>Computer Peripheral</ns1:Category>

<ns1:Name>Acer V173B 17 Monitor</ns1:name>
 <ns1:WeekInv>
 <ns1:BOW>1</ns1:BOW>

 <ns1:EOW>2</ns1:EOW>
 </ns1:WeekInv>
 </ns1:ProductInv>

 </ns1:ListProductInvResult>
 </soapenv:Body>
</soapenv:Envelope>

Figure 3 - The Example of SOAP Message

(ProductInv, nil,
{(Promotion, Y)})

(Merchant,
Acer, {})

(SKU, 1416549728, {})

(WeekInv, nil, {})

(Year, 2008, {})

(ProductInv, nil,
{(Promotion, N)})

(ListProductInvResult, nil,{})

(SKU, 1416549714, {})
(Category,

LaptopComputer, {})
(Name, Acer Aspire One

150-1126, {})

(BOW, 5, {})

(ProductInv, nil,
{(Promotion, Y)})

(Category,
ComputerPeripheral,{})

(Name, Acer V173B
17Monitor, {})

(WeekInv, nil, {})

(SKU, 1416549725, {})

(Category,
LaptopComputer, {})

(Name, Acer Aspire
7726-6307, {})
(WeekInv, nil, {})

(EOW, 3, {}) (BOW, 4, {}) (EOW, 2, {})

(Week, 50, {})

(BOW, 1, {}) (EOW, 2, {})

Figure 4 - The WS-Data Tree for the Body Part of the SOAP Message in Figure 3

8

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

28

Definition 4: (WS-data forest) A data forest
is a multiset of WS-data trees.

In Figure 5(a), we provide an example WS-
data subtree of the WS-data tree from Figure
4, whose root has the tag name ProductInv.
Figure 5(b) shows a data forest that contains
three WS-data trees with the root tag name
WeekInv.

3.2. WS-data algebra

We define a set of operators for manipulating
WS-data forests. As we described in Section
2, previous research has demonstrated that
operators defined in relational algebra can be
applied to manipulate XML documents. Set
operators, such as union, intersection,
difference, and Cartesian product, also can be
applied directly to the WS-data forest (which
is a set); we do not explore this obvious
application. Rather, we reveal how other

primitive relational operators—selection,
projection, and join—can be applied to WS-
data forests.

Location paths defined in XPath 2.0 play
indispensable roles for defining our proposed
operators. A location path retrieves a set of
elements from an XML document, and when
applied to a WS-data tree, it returns a set of
corresponding WS-data subtrees. Take the
WS-data tree in Figure 4 as an example: The
location path
//ListProductInvResult/ProductInv returns a
set of WS-data subtrees with root tag names
of ProductInv, which is shown in Figure 6.

The location path takes as input a WS-data
tree and generates a set of WS-data trees, or
a WS-data forest. We propose an extraction
operation that applies a location path to each
WS-data tree of a given WS-data forest and
returns the union of resultant forests.

(WeekInv, nil, {})

(ProductInv, nil,
{(Promotion, Y)})

(SKU, 1416549714, {})
(Category,

LaptopComputer, {})
(Name, Acer Aspire One

150-1126, {})

(BOW, 5, {})

(WeekInv, nil, {}) (WeekInv, nil, {})

(EOW, 3, {}) (BOW, 4, {}) (EOW, 2, {}) (BOW, 1, {}) (EOW, 2, {})

(WeekInv, nil, {})

(BOW, 5, {}) (EOW, 3, {})

(a) An example WS-data subtree (b) An example WS-data forest

Figure 5 - The Example of WS-Data Subtree and WS-Data Forest

(Category,
ComputerPeripheral,{})

(Category,
LaptopComputer, {})

(Category,
LaptopComputer, {})

(Name, Acer Aspire One
150-1126, {})

(Name, Acer V173B
17Monitor, {})

(Name, Acer Aspire
7726-6307, {})

(ProductInv, nil,
{(Promotion, Y)})

(soapenv:Envelope,
nil, {xmlns,

soapenv,http://sch
emas.xmlsoap.org/
soap/envelope/})

(SKU, 1416549728, {})

(WeekInv, nil, {})

(ProductInv, nil,
{(Promotion, N)})

(SKU, 1416549714, {})

(BOW, 5, {})

(ProductInv, nil,
{(Promotion, Y)})

(WeekInv, nil, {})

(SKU, 1416549725, {})

(WeekInv, nil, {})

(EOW, 3, {}) (BOW, 4, {}) (EOW, 2, {}) (BOW, 1, {}) (EOW, 2, {})

Figure 6 - Result of Applying Location Path //ListProductInvResult/ProductInv to the WS-Data
Tree in Figure 4

9

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

29

Definition 5: (Extraction) Given a WS-data

forest F and a location path , the extraction

operator (F) returns a WS-data forest that
combines WS-data forests resulting from

applying  to each constituent WS-data tree in

F. Formally, (F) = tF(t).

If we let F1 be a WS-data forest that consists
of the single WS-data tree in Figure 4, the
following WS-data expression produces the
WS-data forest in Figure 6, according to the
extraction operator with local path
//ListProductInvResult/ProductInv:

//ListProductInvResult/ProductInv(F1).

Definition 7: (Projection) Given a WS-data

forest F and a location path  for F, the

projection operator (F) returns a forest in
which each WS-data tree contains all WS-

data subtrees obtained by applying  to the

WS-Data tree t, where tF, and all the nodes
located in any path from the root of t to some

WS-Data subtrees. Formally, (F)=tF{t|t is

a subtree of t, and n is a node in t if  t(t(t)

and (nt or  p (p is a path from root(t) to

root(t)), np))}.

For example, if we want to extract the SKU,
Name, and EOW nodes in Figure 6, we
might apply the following WS-data
expression to obtain the desired outcome
shown in Figure 8, which consists of SKU,
Name, and WeekInv/EOW, as well as their
common parent ProductInv:

//ProductInv/(SKU | Name | WeekInv/EOW)(F2).

Definition 6: (Selection) Given a WS-data
forest F and a predicate P, specified as a

location path, the selection operator P(F)
returns a subset of F, such that each retaining
WS-data tree returns a non-empty set when P

applies to it. Formally, P(F)={t | tFP(t)}.

Then let the WS-data forest in Figure 6 be F2.
We retain inventory information about only
products of the category LaptopComputer by
applying the WS-data expression,

//ProductInv[Category='LaptopComputer'](F2). The result,
displayed in Figure 7, shows that one WS-
data tree, with category being
ComputerPeripheral, has been excluded.

Definition 8: (Join) Given two WS-data

forests, F={t1, t2,…,tn} and F'={t1, t2,…,tm}, a
join condition c specified on some location
paths of WS-data trees from F and F', and a
WS-data node r for each generated join root

node, the join operator F⋈ c,rF returns a WS-
data forest in which each constituent WS-
data tree has a root node equivalent to r,
whose left child and right child are WS-data
trees from F and F', respectively, and both
satisfy c. The join condition c includes one or
more conditions connected using the
Boolean operators AND, OR, or NOT. The

form of the condition is 1  2, where 1 and

2 are XPath expressions that specify some
node contents or attribute values of WS-data

trees in F and F', respectively, and  is a

comparison operator such as =, <, >, , , or

.

(ProductInv, nil,
{(Promotion, Y)})

(SKU, 1416549714, {})

(Category, LaptopComupter {})
(Name, Acer Aspire One 150-1126, {})

(WeekInv, nil, {})
(BOW, 5, {})

(SKU, 1416549725, {})
(Category, LaptopComputer, {})
(Name, Acer Aspire 7726-6307, {})
(WeekInv, nil, {})

(ProductInv, nil,
{(Promotion, N)})

(BOW, 4, {})
(EOW, 3, {}) (EOW, 2 , {})

Figure 7 - Result of 
//ProductInv[Category='Laptop Computer']

 (F
2
), where F

2
 is WS-Data Forest in Figure 6

10

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

30

Consider another WS-data forest F3, as in
Figure 9, that contains sales quantity
information. To determine both the
inventory and sales quantity of each
product, we join F2 and F3 based on the
SKU values. Specifically, we can specify
the following expression:

F2⋈ //SKU[text()]=//SKU[text()], (prod_root, nil, {})F3.
Both the SKU values 1416549714 and
1416549728 appear in some WS-data
trees in F2 (Figure 6) and F3 (Figure 9).

Therefore, the resultant WS-data forest in
Figure 10 contains two WS-data trees
whose root node takes the tag name
prod_root, with the left and right child from
F2 and F3, respectively.
Thus far we have defined operators that
manipulate data; we next define a novel
operator that involves Web service
operations. We assume each Web service
operation takes as input a WS-data tree (or
XML document) and returns another WS-data
tree, consistent with the specification of
SOAP-based Web services.

(Category, Laptop Comupter, {})
(Name, Acer Aspire One 150-1126, {})

(SalesItem, nil, {})

(SKU, 1416549714, {})

(Quantity, 20, {})

(Amount, 7420, {})

(SalesItem, nil, {})

(SKU, 1416549728, {})
(Category, Computer Peripheral,{})
(Name, Acer V173B 17 Monitor, {})
(Quantity, 12, {})
(Amount, 1403, {})

Figure 9 – The Example of WS-Data Forest F
3
 for Product Sales

(ProductInv, nil,
{(Promotion,Y)})

(prod_root, nil,{})

(SKU, 1416549714, {})

(WeekInv, nil, {})

(EOW,3,{})

(SalesItem, nil, {})

(SKU, 1416549714, {})

(BOW, 5, {})

(Category,
LaptopComupter, {})
(Name, Acer Aspire
One 150-1126, {})

(Category,
LaptopComupter, {})
(Name, Acer Aspire
One 150-1126, {})
(Quantity, 20, {})

(Amount, 7420, {})

(ProductInv, nil,
{(Promotion,Y)})

(prod_root, nil, {})

(SKU, 1416549728, {})

(WeekInv, nil, {})

(SalesItem, nil, {})

(SKU, 1416549728, {})

(BOW, 1, {})

(Category,
ComupterPeripheral,{})

(Name, Acer V173B
17 Monitor, {})

(Category,
ComupterPeripheral,{})

(Name, Acer V173B
17 Monitor, {})

(Quantity, 12, {})

(Amount, 1403, {})
(EOW, 2,{})

Figure 10 - Result of F
2⋈//SKU[text()]=//SKU[text()], (prod_root,nil,{})

F
3

(Name, Acer Aspire
7726-6307, {})

(ProductInv, nil,
{(Promotion, N)})

(WeekInv, nil, {})

(SKU, 1416549714, {})

(ProductInv, nil,
{(Promotion, Y)})

(ProductInv, nil,
{(Promotion, Y)})

(SKU, 1416549728, {})

(Name, Acer173B 17
Monitor, {})

(WeekInv, nil, {})

(SKU, 1416549725, {})

(WeekInv, nil, {})

(EOW, 2, {}) (EOW, 2, {})

(Name, Acer Aspire
One 150-1126, {})

(EOW, 3, {})

Figure 8 - Result of //ProductInv/(SKU | Name | WeekInv/EOW)(F2), where F2 is WS-Data forest in Figure 6

11

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

31

Definition 9: (Repeated invocation) A

repeated invocation of a Web service

operation W.o() on a forest F, denoted

W.o()(F), returns a WS-data forest that

represents the union of invoking W.o on

each WS-data tree of F. Formally, W.o()(F)

= {W.o(t) | tF}.

Let F4 be a WS-data forest containing WS-
data trees about some desired products
whose SKUs are 1416549714 and
1416549728. A Web service ProdService
contains the operation getPrice() that
takes as input a single product and returns
its SKU, price, and order quantity.

Consider the operation Replenishment() of
the Web service OrderService, whose
input message type appears in Figure
12(a). It takes SKU, current inventory level
(Inv), and sales quantity (SaleQty) as input
and generates a replenishment plan. The
required input can be derived from the
result of the join operation in Figure 10
(named F5); specifically, the contents of
SKU, Inv, and SaleQty correspond to the

The expression ProdService.getPrice() (F4) returns
a WS-data forest, in which each constituent
WS-data tree contains the price and ordered
quantify for each product in F4, as we show in
Figure 11.
Each Web service operation has a specific
format for its input message. Before invoking
a Web service operation, we must prepare an
input message that conforms to its format.
We consider message heterogeneity in the
WS-data model and treat the data conversion
process as a special Web service operation,
which can be used with a repeated invocation
operator to achieve an appropriate data
conversion.

element contents of SKU, EOW, and Quantity.
Let the Web service operation
CVT.Sale2Replenishment() implement this
conversion. The expression

CVT.Sale2Replenishment()(F5) then converts the WS-
data trees in Figure 10 into the desired WS-
data forest in Figure 12(b), which serves as
the input to OrderService.Replenishment().

(PricingResult,nil,{}) (PricingResult,nil,{})

(SKU,
1416549714, {}) (UnitPrice,3.5,{}) (OrderQty,20,{}) (SKU,

1416549728, {})
(UnitPrice, 2.5, {}) (OrderQty,12,{})

Figure 11 - Result of 
ProdService.getPrice()

(F
4
)

(ReplenishmentRequest,nil,{})

(SKU,
1416549714, {}) (Inv, 3, {}) (SaleQty,20,{}) (SKU,

1416549728, {})
(Inv, 2, {}) (OrderQty,12,{})

(b) Final result

(ReplenishmentRequest,nil,{})

(a) Input message type for OrderService.Replenishment()

<xsd:element name=”ReplnishmentRequest”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”SKU” type=”xsd:stirng”/>
<xsd:element name=”Inv” type=”xsd:integer”/>
<xsd:element name=”SaleQty” type=”xsd:integer”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Figure 12 - Results of 
CVT.Sale2Replenishment()

(F
5
), where F

5
 is the WS-Data Forest in Figure 10

12

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

32

By properly combining several WS-data
operations to form a WS-data expression,
we can satisfy data requirements. For
example, consider a Web service
RetailService that contains an operation
ListProductSales(t) that takes as its input
the merchant and a specific week (WS-
data tree t) and then generates detailed
sales information for each item (also
represented as a WS-data tree). Figure 13
provides the sample output of
RetailService.ListProductSales(t), listing
sales information about several items sold
by the merchant in that week, as well as

relevant related information. The following
WS-data expression can derive information
about sale items:

//ListProductSalesResult/SalesItem(RetailService.ListProduct

Sales()({t})).

We provide the result of this WS-data
expression in Figure 14. To list only the
ordered items with quantity greater than 20,
we add another selection operator, resulting
in the following WS-data expression:

//Quantity[text()>20](//ListProductSalesResult/SalesItem(R

etailService.ListProductSales()({t}))).

(Name, Acer Aspire One 150-1126, {})

(ListProductSalesResult, nil, {})

(Merchant, Acer, {})

(Year, 2008, {})

(SalesItem, nil, {})
(SKU, 1416549714, {})

(Category, Laptop Comupter, {})

(Quantity, 21, {})
(Amount, 7420, {})

(SalesItem, nil, {})
(SKU, 1416549728, {})

(Category, Computer Peripheral,{})
(Name, Acer V173B 17 Monitor, {})

(Quantity, 12, {})

(Week, 50, {})

(Amount, 1403, {})

Figure 13 - Sample Result of RetailService.ListProductSales(t)

(Name, Acer Aspire One 150-1126, {})

(SalesItem, nil, {})

(SKU, 1416549714, {})
(Category, Laptop Comupter, {})

(Quantity, 21, {})
(Amount, 7420, {})

(SalesItem, nil, {})

(SKU, 1416549728, {})
(Category, Computer Peripheral,{})

(Name, Acer V173B 17 Monitor, {})

(Quantity, 12, {})
(Amount, 1403, {})

Figure 14 - Result of 
//ListProductSalesResult/SalesItem

(
RetailService.ListProductSales()

({t}))

13

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

33

3.3. Equivalence rules

Operators from relational algebra offer
some nice properties that enable a
functionally equivalent, optimal
rearrangement of operators in a query
expression. Most operators borrowed from
relational algebra preserve the same
equivalence rules (Frasincar et al., 2002;
Ullman, 1989). In addition, the WS-data
model includes novel equivalence rules
that apply to its unique operators.

Rule 1 (Cascade of selections): When a
selection operator is associated with a
conjunction of several predicates, it can be
split into a cascade of selection operators,
each associated with a single predicate.

Formally, P1…Pn
(F) P1

((Pn
(F)),

where Pi, 1in, is a predicate, and F is a
WS-data forest.

Rule 2 (Commutativity of selections):
When a WS-data expression involves a
cascade of two selections, their execution
order can be swapped without affecting

the final result. Formally, P1
(P2

(F))

P2
(P1

(F)), where P1 and P2 are

predicates, and F is a WS-data forest.

Rule 3 (Commutativity of selection with
projection): When a WS-data expression
involves a cascade of selection and
projection operators, in which the selection
attributes is a subset of the projection
attributes, their execution order can be
swapped without affecting the final result.

Formally, P ( (F))  (P (F)), where P is

the predicate,  is the location expression,
and F is a WS-data forest.

Rule 4 (Selection push-down): When a
selection operator is applied to the output
of a join operator, it can be applied first to
the operands of the join operator without

affecting the final result. Formally, P(F⋈,

(prod_root, nil, {})G)P(F) ⋈, (prod_root, nil, {})P(G),

where P and  are the predicates for

selection and join, respectively, and F and
G are two WS-data forests.
Rule 5 (Commutativity of selection with
union): When a selection operator is applied
to the output of a union operator, it can be
applied first to the operands of union before
employing the union operator without
affecting the final result. Formally,

P(t1…tn)P(t1)…P(tn),where ti, 1in,
is a WS-data tree, and P is the predicate.

Rule 6 (Commutativity of projection with
union): When a projection operator is applied
to the output of a union operator, it can be
applied first to the operands of the union
before employing the union operator, without
affecting the final result. Formally,

(t1…tn)(t1)…(tn), where ti, 1in,

is a WS-data tree, and  is the location path.

Rule 7 (Commutativity of extraction with
union): When an extraction operator is
applied to the output of a union operator, it
can be applied first to the operands of the
union before employing the union operator,
without affecting the final result. Formally,

(t1…tn)(t1)…(tn), where ti, 1in,

is a WS-data tree, and  is the location path.

Rule 8 (Distributivity of RI-selection): When a
selection operator is applied to the output of
a repeated invocation, it can be concatenated
to the associated Web service operation.

Formally, P(W.o())(F)) P(W.o())(F), where F

is a WS-data forest, and P is a predicate.

Note that P(W.o()) is a concatenation of W.o()

and the selection operator (P), which first
applies W.o() to the given WS-data tree. The
output WS-data tree then can be filtered by

the selection operator (P), depending on
whether it satisfies P.

Rule 9 (Distributivity of RI-projection): When
a projection operator is applied to the output
of a repeated invocation, it can be
concatenated to the associated Web service

operation. Formally, (W.o()(F)) ((W.o())(F),

where F is a WS-data forest, and  is the

location path. Similarly, (W.o()) is a

14

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

34

concatenation of W.o() and the projection

operator (), which first applies W.o() to the
given WS-data tree and then projects the

result by the projection operator ().

Rule 10 (Distributivity of RI-extraction):
When an extraction operator is applied to
the output of a repeated invocation, it can
be concatenated to the associated Web

service operation. Formally, (W.o()(F))

((W.o())(F), where F is a WS-data forest,

and  is a location path. Again,  (W.o())
is regarded as a concatenation of W.o()

and the extraction operator ().

Rule 11 (RI-expansion): A repeated

invocation on a WS-data forest F, W.o()(F),
is equivalent to the union of two repeated
invocations on F1 and F2, where {F1, F2} is

a partition of F. Formally, W.o()(F) 

W.o()(F1) W.o()(F2), where F is a WS-data
forest, and {F1, F2} is a partition of F.

Rule 12 (RI-pipeline): A cascade of

repeated invocations, W2.o2()(W1.o1()(F)) is

equivalent to the repeated invocation on a
concatenation of W1.o1() and W2.o2() on F.

Formally, W2.o2()(W1.o1()(F))

W2.o2(W1.o1())(F), where F is a WS-data forest.

4. Representation of Web service
composition
The set of equivalent rules supports the
transformation of a WS-data expression to
another that can be executed more
efficiently. For example, consider the RI-

pipeline rule (W2.o2()(W1.o1()(F))

W2.o2(W1.o1())(F)). In this case,  W2.o2(W1.o1())(F)

is usually more efficient because WS-data
trees in F can be concurrently processed
by W2.o2() and W1.o1() in a pipelined
manner. We next describe a scenario that
involves several component Web services,
as well as abstract services, or interfaces
that allow several implementations yet
achieve the same functionality. This
scenario also serves to illustrate our cost
model.

4.1. Scenario for Web service
composition

We consider a vendor-managed inventory
(VMI) business model in business-to-
business e-commerce, an extension of the
replenishment process described in Section 1.
Many supply chains use VMI successfully to
prevent out-of-stock situations while still
reducing inventory in the supply chain. With
VMI, the supplier takes full responsibility for
maintaining an established inventory level for
the retailer, determines the replenishment
order quantity, and delivers products to the
retailer in a regular basis.

We assume that the retailer provides two Web
service operations. ListProductInv() and
ListProductSales(), that return inventory and
sales data, respectively, in a specified period.
Information about stock held at the
distribution center and by the transportation
agent is also crucial. Thus, the distribution
center and transportation agent offer Web
service operations ListDCInv() and
ListGITInv(), respectively, to indicate their
inventory. Stock information at various stages
of the supply chain then can be aggregated
using the supplier-provided abstract Web
service operation, ListTotalStock().
Furthermore, the supplier offers a Web
service operation Replenishment() to
compute the replenishment order quantity
according to the total stock, a Web service
operation getPrice() for the price of a single
product, and a Web service operation
PriceList() for the prices of all products.

The goal of the query in this scenario is to list
the order quantities and prices of promoted
laptop computers that need replenishment.
Starting with the concurrent invocation of
ListDCInv(), ListGITInv(), and
ListProductInv(), it obtains stock information
across the entire supply chain. The stock
information then can be aggregated by
invoking ListTotalStock(), and the query
obtains product sales information in a specific
period (e.g., week) by invoking
ListProductSales(). Both stock and sales
information serve as inputs to

15

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

35

Replenishment() to determine suitable
replenishment order quantities. Because the
focus of the query is laptop computers, only
the replenishment orders for promoted
products in the category LaptopComputer
with order quantity greater than 0 are needed.
Finally, the prices of replenishment products
are based on their order quantities,
determined by invoking getPrice() or
PriceList().

To simplify the query representation, we
use an abstract service to determine
product prices, which supports several
implementations. We use the notation

AWS.op(), I (F) to represent the application of
an abstract service to a WS-data forest F,
where AWS.op() is the abstract service
operation, and I is the set of functionally
equivalent implementations. For example,
the determination of product prices can be
implemented by repeatedly invoking
getPrice() for each item from the order list
or by joining the order list and price list
returned by getPriceList(). In the following
two implementations, F is a WS-data
forest about ordered products and
CVT.rule2() is a data conversion Web
service operation that converts a WS-data
tree to the desired format:

1. ProdService.getPrice()(F).

2. CVT.rule2()(F⋈//SKU[text()]=//SKU[text()], (prod_root,

nil, {}) //ProductItem(ProdService.PriceList()()).
Figure 15 depicts the entire query tree. The
initial query tree uses two abstract services,

StockService.ListTotalStock(),I1
()and PriceService.Pricing(),

I2
(), to aggregate stock information and

determine replenished product prices,
respectively. For clarity, we portray each
WS-data expression for manipulating WS-
data as a box with curved angles and the
invocation for abstract services as a box
with dotted lines. The equivalent WS-data
expressions of the initial query tree are:

E1 = StockService.ListTotalStock(), I1
().

E2 = SalesService.ListProductSales()().

E3 = //ProductInv(E1) ⋈ //SKU[text()]=//SKU[text()],

(prod_root, nil, {})//SalesItem(E2).
E4 =

//Category[text()='LaptopComputer']//ProductInv[@Promotion=’Y’]

(E3).

E5 = CVT.rule1()(E4).

E6 = OrderService.Replenishment()(E5).

E7 = /ReplenishmentResult[OrderQty>0] (E6).

E8 = PriceService.Pricing(), I2
(E7).

E
1
=

StockService.ListTotalStock(),I1
()

: WS-data operation

E
8
=

 PriceService.Pricing(),I2
(E

7
)

: Abstract WS invocation

E
4
=

//Category[text()='LaptopComputer']//ProductInv[@Promotion=’Y’]
(E

3
)

 E
3
= 

//ProductInv
(E

1
)
 ⋈P,T


//SalesItem

(E
2
)

E
7
=

/OrderItem[OrderQty > 0]
(E

6
)

 E
6
=

OrderService
.
Replenishment()

(E
5
)

 E
5=


CVT.rule1()
(E

4
)

E
2
=

SalesService.ListProductSales()
()

 Figure 15 - Initial VMI Query Tree
Notes: Abstract services represented by rectangles with dotted lines.

16

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

36

The execution plan can be derived by
choosing one implementation for each
abstract service. Figure 16 shows an
executable query tree that joins results
from ListDCInv(), ListGITInv(), and
ListProductInv() and the repeated
invocation of getPrice() for abstract

4.2. WS-data cost model

We propose a cost model for estimating
the execution time of an executable query
tree. Because a query tree is iteratively
constructed using nodes, each involving a
WS-data operator, its cost can be derived
as soon as we can estimate the cost of
each WS-data operator. There are four
means to estimate the cost of a WS-data
expression involving different operators.

services, StockService.ListTotalStock() and

PriceService.Pricing(). The shaded nodes,
numbered 1–6, constitute the implementation

of StockService.ListTotalStock(),, and the shaded node,
numbered 13, forms the implementation of

PriceService.Pricing().

Cost equation 1: Cost of repeated
invocation on a single operation

E0=W.o()(E1). Here, cost(E0) =

|E1|time(W.o())+cost(E1), where the
cardinality of E1, denoted |E1|, is the number
of WS-data trees in the result of E1, and
time(W.o()) denotes the response time of
the physical Web service operation (W.o()).
For example, consider E6 (node 11) in
Figure 16. Assume that the response time of
the Web service operation
OrderService.Replenihsment() is the 10 ms,
the cost of E5 is 250 ms, and the cardinality
of the result of E5 is 500; the cost of E6 is 500

 10 + 250 = 5250 ms.

17

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

37

Cost equation 2: Cost of repeated

invocation on a sequence of operations

E0=Wn.on(…(W1.o1())…) (E1). To execute

Wn.on(…(W1.o1())…) (E1), we can execute

Wn.on, …, W1.o1 in a pipelined fashion.

Therefore, cost(E0) =

(|E1|1)Max
1in

time(wi.oi)+1jn
time(wj,oj

)+cost(E1)+|E1|n, where time(Wi.oi)

and time(Wj.oj) are response times of the

physical Web service operations, Wi.oi and

Wj.oj respectively, and  is the overhead

for data transmission. Consider nodes 11

to 13 in Figure 16. By applying

equivalence rules 8 and 12, we can

combine them into the following

expression that involves three operations:

E8 =  ProdService.getPrice (//OrderItem[OrderQty

>0](OrderService.Replenishment()))(E5).

Suppose the response times of each

invocation for selection (OrderQty>0),
ProdService.getPrice() and
OrderService.Replenishment(), are 180 ms,
500 ms, and 300 ms, respectively; the cost of
E5 is 7,660 ms; and the cardinality of E5 is 200.

The cost of E8 therefore is 199  500 + (500

+ 300 + 180) + 7660 + 200  3   = 108140

+ 600 ms.

Cost equation 3: Cost of unary operation

E0=O(E1). Here O denotes a unary operator,

which could be selection, projection, or

extraction. The cost can be computed as

cost(E0) = time(O(E1)) + cost(E1), where

time(O(E1)) is the time to apply the unary

operator O to the result of E1, which is linearly

proportional to |E1|. We discuss the methods

for determining the execution times of various

unary and binary operators in Section 5.1.

Consider the WS-data expression E7 (node

12) in Figure 16. If the execution time of

selection on the E7 result is 90 ms, and the

cost of E6 is 5,250 ms, the cost of E7 is 90 +

5250 = 5340 ms.

Cost equation 4: Cost of binary operation

E0=E1 O E2. In this case, O denotes a binary

operator, which could be join, union, or

difference. Both E1 and E2 can be executed in

parallel. Therefore, the cost of E0 is cost(E0)

= time(O(E1, E2)) + max(cost(E1), cost(E2)),

where time(O(E1, E2)) is the execution time of

the binary operation O on E1 and E2, a

function of |E1| and |E2|. Consider the WS-

data expression F3 (node 3) in Figure 16,

which involves a join operation. Its cost is the

sum of the execution time for the join and the

maximum cost of F1 and F2. Suppose that the

execution time of the join is 300 ms and the

costs of F1 and F2 are 4,340 ms and 4,500 ms,

respectively. The cost of F3 is 300 +

max(4340, 4500) = 4,800 ms.

5. Experiments
In this section, we show how to determine
empirically the execution time of each
operator defined in WS-data algebra with
different data sizes and then perform the cost
estimation. We also describe an approach
that applies the WS-data algebraic
equivalence rules for transforming query
trees. We implement all operators defined in
WS-data algebra and seven Web services
required for the stock replenishment process
in Java. We further develop a query engine
that executes WS-data query trees. All
implementations are hosted on Amazon
Elastic Compute Cloud (Amazon EC2). We
finally report the results and compare them
against analytical results obtained using the
proposed cost model.

5.1. Performance of WS-data
operators

We implemented all seven proposed WS-
data operators: selection, projection,
extraction, union, difference, join, and
repeated invocation. The response times of
the six operators that do not involve Web
service operations (cf. repeated invocation)
are measured. For each operator, we vary the

18

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

38

cardinality of the input WS-data forest and
collect its response time. In Table 1, we list
the average response times of each operator
on a PC server with an Intel Xeon 2.33 GHz
CPU, running the Linux operating system, for
different data sizes. We tried two methods to
implement the join operator, hash join and
nested loop, and found that hash join
performed significantly better. Therefore,
Table 1 contains the hash join results, and we
adopt this method in our subsequent
experiments.

The response time of each WS-data operator
grows approximately linearly with the
cardinality of the input WS-data forest, as

Figure 17 shows. However, some operators
are more sensitive to the cardinality of the
input WS-data forest than others. Operators
such as selection, join, and repeated
invocation belong to this category, because of
their greater processing overhead. According
to our experiments, the growth slopes of
projection and extraction are .08 and .006,
respectively; those of selection and join are .6
and 1.3, respectively. Of the six WS-data
operators, the join operator is the most time
consuming, which coincides with previous
relational algebra findings.

.

Table 1 - Execution Time of Operators with Different Data Size (ms)

Cardinality Selection Projection Extraction Union Difference Join

100 89.8 11.3 9.8 10.0 7.8 151.0

200 138.0 17.3 14.3 15.0 10.8 269.6

300 223.3 24.3 18.0 20.0 13.5 423.8

400 293.0 29.8 22.5 25.0 16.5 542.8

500 342.8 36.0 28.0 33.5 19.5 742.4

1320 876.0 102.2 75.7 72.8 44.3 1,749.8

3250 2,032.3 259.4 184.9 187.0 110.0 4,268.8

19

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

39

5.2. Cost estimation and optimization
procedure

Using the cost model described in
Section 4.2, we measure the cost of
each node in an executable query tree.
The execution times of the invoked
Web services, the selectivity of the
associated predicates, and the execution

times of involved WS-data operators in the
stock replenishment process appear in
Tables 2, 3, and 4, respectively. Figure 18
depicts the estimated cost and output
cardinality of each node in the executable
query tree of Figure 16. The total execution
time of the entire executable query tree is

154.4 seconds, and the cardinality of the
final WS-data forest is 100.

We next transform the executable query tree
in Figure 18 to another query tree by applying
the equivalence rules from Section 3.3. To
improve performance, we adopted a heuristic
approach, similar to the query optimization
method proposed by Ullman (Ullman, 1989)
for optimizing data queries, as follows:
Step 1: Apply cascade of selections (i.e., rule

(1)) to decompose multiple predicates into a

cascade of selections.

Step 2: Apply selection rules (3 and 4) to push
selection down as much as possible.

20

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

40

Step 3: Use the most restrictive selection first
(i.e., rule (2)) to reduce the cardinality of
previous output.
Step 4: Apply RI rules (8, 9, and 10) to reduce
the cardinality of Web service output.
After conducting steps 1 and 2 for the query
tree in Figure 18, we split the predicates of
WS-data expression E4 in node 9 into a
cascade of two selections, then push both
selection operators down as far as possible.
Thus, the predicate
//Category[text()='LaptopComputer'] can be
pushed down to right above nodes 1, 2, 4, and
7, and the predicate
//SalesItem[@Promotion=’Y’] can be pushed
down to prior to node 8. After step 3, the
selection with predicate
//SalesItem[@Promotion=’Y’] appears before
that of //Category[text()='LaptopComputer'],
because the former is more restrictive than
the latter. Finally, by applying rule 8, as
required in step 4, we combine nodes 11
and 12 in Figure 18. In the resultant query

tree in Figure 19, we shade the updated
nodes after applying the transformation
steps for clarity.

According to Table 1, join is the most time-
consuming operator among all WS-data
operators. We expect performance
improvements after applying our query
transformation procedure because reducing
input tuples through early selection should
result in fewer tuples for the join. Comparing
the cost(E5) in node 10 of the original query
tree in Figure 18 with the corresponding
node 12 of the optimized query tree in
Figure 19, we find costs of 24.22 and 12.62
Seconds, respectively, or a cost reduction of
approximately 48%.

Next we consider the total costs of the original
and optimized query trees, 154.4 and 142.8
seconds, respectively, which implies a small
cost reduction (7.51%). Both query trees
involve repeated invocations for the Web

10

6

5

7

8

9

11

12

1 2

3 4

13

E
1
=

//SysStock
((E

1
))

E
1
=F

3
⋈

//SKU[text()]=//SKU[text()], (SysStock, nil, {})
F

4

F
3
=F

1
⋈

//SKU[text()]=//SKU[text()], (Stock, nil, {})
F

2

E
3
= E

1
⋈

/SKU/[text()]=//SKU[text()], (prod_root, nil, {})
E

2

E
4
=

//Category[text()='LaptopComputer']//ProductInv[@Promotion=’Y’]
(E

3
)

E
7
=

/OrderItem[OrderQty > 0]
(E

6
)

Cost(E3)=22.4, Cardinality=2000

Cost(E
4
)=24.2, Cardinality=200

Cost(E
6
)=124.22, Cardinality=200

Cost(E
8
)=154.4, Cardinality=100

Cost(E7)=124.4, Cardinality=100

Cost(E
2
)=4.2, Cardinality=2000

Cost(E1)=16.4, Cardinality=2000

Cost(F
2
)=4.2, Cardinality=2000

Cost(F1)=4.2, Cardinality=2000

Cost(F3)=10.2, Cardinality=2000
Cost(F

4
)=4.2, Cardinality=2000

Cost(E
5
)=24.22, Cardinality=200

E
8
=

ProdService.getPrice()
(E

7


)

E
6
=

OrderService
.
Replenishment()

(E
5
)

E
5
=

CVT.rule1()
(E

4
)

E
2
=

/ListSalesResult
(

RetailService.ListProductSales()
())

F
4
=

//ProductInv
(

RetailService.ListProductInv()
())

F
2
=

//GITInv
(

GITService.ListGITInv()
()) F

1
=

//DCInv
(

DCService.ListDCInv()
())

Cost(E
1
)=16.2, Cardinality=2000

Figure 18 - Cost Estimate of the Executable Query Tree in Figure 16

21

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

41

service operations Replenishment() and
getPrice(), and the sequential execution of
these two operations dominates the total cost.
To alleviate this problem, we select the other
abstract service implementation
PriceService.Pricing(), which produces the
transformed query tree in Figure 20. The
revised query tree in this case reduces the
total cost by almost 25%.
Alternatively, we might combine node 13 and
14 in Figure 19 into a single node (node 13),
as we show in Figure 21, by applying
equivalence rule 12. Thus, node 13 in Figure
21 allows for the pipelined execution of the

Web service operations Replenishment() and
getPrice() and the selection operator. The
cost estimation of the allows for the pipelined
execution of the Web service operations
optimized query tree in Figure 21 is 112.92 +

600 seconds, where  is the overhead
associated with transmitting a data item from

one host to another. Because  depends on
networking and server performance, the cost
improvement cannot be determined exactly.
However, the optimized query tree in Figure
21 clearly outperforms the original executable
query tree in Figure 18 by approximately 21%

if  is less than 15 ms.

4 3 5

6 7

1 2

8

9 10

11

12

13

14

F
4
=

//Category[text()='LaptopComputer']
(

//ProductInv[@Promotion=’Y’]
 (F

4
) F

3
=F

1
⋈F

2


F
2
=

//Category[text()='LaptopComputer']
 (F

2
) F

1
=

//Category[text()='LaptopComputer']
 (F

1
)

E
3
=E

1
⋈E

2


E
1
=F

3
⋈F

4
 E

2
=

//Category[text()='LaptopComputer']
(E

2
) Cost(E2)=4.2, Cardinality=2000

Cost(E1)=10.8, Cardinality=200
Cost(E

2
)=6, Cardinality=1000

Cost(F1)=4.2, Cardinality=2000
Cost(F

2
)=4.2, Cardinality=2000

Cost(F1)=6, Cardinality=1000
Cost(F2)=6, Cardinality=1000

Cost(F
3
)=9, Cardinality=1000

Cost(F4)=4.2, Cardinality=2000

Cost(F4)=6, Cardinality=200

Cost(E5)=12.62, Cardinality=200

Cost(E
7
)=112.8, Cardinality=100

Cost(E
8
)=142.8, Cardinality=100

E
8
=

ProdService.getPrice()
(E

7


)

E
5
=

CVT.rule1()
(E

3
)

E
2
=

/ListSalesResult
(

RetailService.ListProductSales()
())

F
4
=

//ProductInv
(

RetailService.ListProductInv()
())

F
2
=

//GITInv
(

GITService.ListGITInv()
()) F

1
=

//DCInv
(

DCService.ListDCInv()
())

E
7
=

/OrderItem[OrderQty > 0](OrderService
.
Replenishment())

(E
5
)

Cost(E3)=12.6, Cardinality=200

Figure 19 - Cost Estimate of the Optimized Query Tree
Notes: The shaded boxes are the revised nodes, after applying the equivalence rules.

Table 5 - Performance Comparison: Query Trees Executed on Amazon EC2

Stages

Query trees

E5

(seconds)

Reduction

Ratio

Total

(seconds)

Reduction

Ratio

Original executable query tree in Figure 18 18.717 — 151.885 —

Optimized query tree in Figure 19 10.528 43.75% 143.738 5.36%

Optimized query tree in Figure 20 10.144 45.80% 113.083 25.55%

Optimized query tree in Figure 21 10.162 45.71% 119.073 21.60%

22

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

42

5.3. Comparing original and optimized
query trees executed on Amazon cloud
To confirm the validity of our approximation
measurement, we emulated the execution of
the original and optimized executable query
trees using the parameters in Table 2 and 3.
Specifically, we deployed the Web services
and query engine with two virtual machines of
high CPU medium, located on Amazon EC2
on the Asia Pacific region. That is, the query
engine is executed on one virtual machine,
and Web services are deployed on another.
We launched 10 runs for each query tree in
Figures 18–21 and collected their execution

times; we provide the performance results in
Table 5. Compared with the analytical results,
the average execution times in emulation are
greater due to the overhead associated with
transferring data and invoking operators.
However, the cost reduction ratios match our
estimation results. For example, for query
processing up to E5, the cost reductions of the
optimized query tree in Figures 19, 20, and
21 are 43.75%, 45.8%, and 45.71%,
respectively, and the performance
improvements in terms of total response
times are 5.36%, 25.55%, and 21.60%,
respectively.

4 3 5

6 7

1 2

8

9 10

11

12

13 14

15

16

F
4
=

//Category[text()='LaptopComputer']
(

//ProductInv[@Promotion=’Y’]
 (F

4
) F

3
=F

1
⋈F

2


F
2
=

//Category[text()='LaptopComputer']
 (F

2
) F

1
=

//Category[text()='LaptopComputer']
 (F

1
)

E
3
=E

1
⋈E

2


E
1
=F

3
⋈F

4
 E

2
=

//Category[text()='LaptopComputer']
(E

2
)

F
6
=E

7
⋈F

5

Cost(E
2
)=4.2, Cardinality=2000

Cost(E1)=10.8, Cardinality=200
Cost(E2)=6, Cardinality=1000

Cost(F1)=4.2, Cardinality=2000
Cost(F

2
)=4.2, Cardinality=2000

Cost(F
1
)=6, Cardinality=1000

Cost(F2)=6, Cardinality=1000

Cost(F
3
)=9, Cardinality=1000

Cost(F4)=4.2, Cardinality=2000

Cost(F
4
)=6, Cardinality=200

 Cost(E5)=12.62, Cardinality=200

Cost(E
7
)=112.8, Cardinality=100

Cost(E8)=115.96, Cardinality=100

Cost(E3)=12.6, Cardinality=200

E
8
=

CVT.rule2()
 (F

6
)

F
5
=

ProdService. PriceList()
()

E
5
=

CVT.rule1()
(E

3
)

E
2
=

/ListSalesResult
(

RetailService.ListProductSales()
())

F
4
=

//ProductInv
(

RetailService.ListProductInv()
())

F
2
=

//GITInv
(

GITService.ListGITInv()
()) F

1
=

//DCInv
(

DCService.ListDCInv()
())

E
7
=

/OrderItem[OrderQty > 0](OrderService
.
Replenishment())

(E
5
)

Figure 20 - Cost Estimate of the Optimized Query Tree with PriceService.Pricing()
Notes: The shaded boxes are the details of the implementation.

23

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

43

6. Conclusion
We have proposed a WS-data model that

represents the input/output messages of Web
service operations as WS-data trees. It
involves several operators, similar to
relational operators, that mediate the
input/output message across Web services,
including projection, selection, extraction, and
join. In addition, the invocation of Web service
operations is possible in the WS-data model
because of the repeated invocation operator.
Finally, we introduce the idea of abstract
services to simplify the representation of
composite Web services in WS-data
expression.

We studied the equivalent rules pertaining to
the WS-data model, which pave the way for
optimizing a query tree based on a WS-data
expression. We also develop a cost model to
estimate the cost of a query tree. The
heuristic procedure we describe can
transform a query tree according to
equivalence rules; we illustrate this approach
with a VMI stock replenishment process and

reveal that the optimized query tree reduces
costs significantly in emulation experiments
conducted on the Amazon EC2 platform.

In further research, we plan to study
strategies for selecting the appropriate
implementation of abstract Web service to
reduce the number of executable query trees
and improve the performance of the
optimized query trees. Our current cost model
describes the response time of Web service
operation as a fixed value (e.g., average
response time), but in real world, it may be a
probability distribution with different
parameters, such as input cardinality. The
best means to estimate the cost of a query
tree in such settings deserves further
investigation.

Acknowledgement
This work was supported in part by the

National Science Council in Taiwan under
Grant NSC 101-2410-H-110-015-MY2.

4 3 5

6 7

1 2

8

9 10

11

12

F
4
=

//Category[text()='LaptopComputer']
(

//ProductInv[@Promotion=’Y’]
 (F

4
) F

3
=F

1
⋈F

2


F
2
=

//Category[text()='LaptopComputer']
 (F

2
)

E
3
=E

1
⋈E

2


E
1
=F

3
⋈F

4
 E

2
=

//Category[text()='LaptopComputer']
(E

2
)

13

E
5
=

CVT.rule1()
(E

3
)

E
2
=

/ListSalesResult
(

RetailService.ListProductSales()
())

F
4
=

//ProductInv
(

RetailService.ListProductInv()
())

F
2
=

//GITInv
(

GITService.ListGITInv()
()) F

1
=

//DCInv
(

DCService.ListDCInv()
()) Cost(F1)=4.2, Cardinality=2000

Cost(F
2
)=4.2, Cardinality=2000

Cost(E
2
)=4.2, Cardinality=2000

Cost(E1)=10.8, Cardinality=200
Cost(E

2
)=6, Cardinality=1000

Cost(F
1
)=6, Cardinality=1000

Cost(F
2
)=6, Cardinality=1000

Cost(F
3
)=9, Cardinality=1000

Cost(F
4
)=4.2, Cardinality=2000

Cost(F4)=6, Cardinality=200

Cost(E
3
)=12.6, Cardinality=200

Cost(E
8
)=112.92+600, Cardinality=100

Cost(E
5
)=12.62, Cardinality=200

E
8
=

 ProdService.getPrice (//OrderItem[OrderQty >0](OrderService
.
Replenishment()))

(E
5
)

Figure 21 - Cost Estimate of the Optimized Query Tree in Pipeline Execution
Notes: The shaded box is the result of combining nodes 13 and 14 from Figure 19.

24

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

44

REFERENCES
Akkiraju, R., Srivastava, B., Ivan, A. A.,

Goodwin, R., and Syeda-Mahmood, T.
(2006). "SEMAPLAN: Combining
planning with semantic matching to
achieve Web service composition,"
Proceedings of the IEEE International
Conference on Web Services
(ICWS'06).

Algergawy, A., Nayak, R., and Saake, G.
(2010). "Element similarity measures
in XML schema matching,"
Information Sciences, 180(24), 4975-
4998.

Basu, A., and Blanning, R. W. (1998). "The
Analysis of Assumptions in Model
Bases Using Metagraphs,"
Management Science, 44(7), 982-995.

Basu, A., and Blanning, R. W. (2000). "A
Formal Approach to Workflow
Analysis," Information Systems
Research, 11(1), 17-36.

Berardi, D., Calvanese, D., De Giacomo, G.,
Lenzerini, M., and Mecella, M. (2005).
"Automatic service composition based
on behavioral descriptions,"
International Journal of Cooperative
Information Systems, 14(4), 333-376.

Bonczek, R. H., Holsapple, C. W., and
Whinston, A. B. (1980). "The Evolving
Roles of Models in Decision Support
Systems," Decision Sciences, 11(2),
337-356.

Boukottaya, A., and Vanoirbeek, C. (2005).
"Schema matching for transforming
structured documents," Proceedings
of the 2005 ACM Symposium on
Document Engineering, Bristol,
United Kingdom.

Caswell, N. S., Nikolaou, C., Sairamesh, J.,
Bitsaki, M., Koutras, G. D., and
Iacovidis, G. (2008). "Estimating
Value in Service Systems: A Case

Study of a Repair Service System,"
IBM Systems Journal, 47(1), 87-100.

Chen, K., Xu, J., and Reiff-Marganiec, S.
(2009). "Markov-HTN planning
approach to enhance flexibility of
automatic Web service composition,"
Proceedings of the IEEE International
Conference on Web Services
(ICWS'09).

Christensen, E., Curbera, F., Meredith, G.,
and Weerawarana, S. (2001). "Web
Services Description Language
(WSDL) 1.1," At
http://www.w3.org/TR/2001/NOTE-
wsdl-20010315, on May 21, 2014.

Dolk, D. R., and Konsynski, B. (1984).
"Knowledge Representation for Model
Management Systems," IEEE
Transactions on Software
Engineering, SE-10(6), 619-628.

Doshi, P., Goodwin, R., Akkiraju, R., and
Verma, K. (2004). "Dynamic workflow
composition using Markov decision
processes," International Journal of
Web Services Research, 2(1), 576-
582.

Fernandez, M., Malhotra, A., Marsh, J., Nagy,
M., and Walsh, N. (2007). "XQuery 1.0
and XPath 2.0 Data Model,"
Retrieved from
http://www.w3.org/TR/xpath-
datamodel/, on 2009.01.01, 2009.

Fielding, R. (2000). Architectural Styles and
The Design of Network-based
Software Architectures. Ph. D.,
University of California, Irvine.

Frasincar, F., Houben, G. J., and Pau, C.
(2002). "XAL: an algebra for XML
query optimization," Australian
Computer Science Communications,
24(2), 49-56.

Gerede, C. E., Hull, R., Ibarra, O. H., and Su,
J. (2004). "Automated composition of

25

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

45

e-services: lookaheads," Proceedings
of the the 2nd International
Conference on Service Oriented
Computing.

Glushko, R. J., and Tabas, L. (2009).
"Designing Service Systems by
Bridging the “Front Stage” and “Back
Stage”," Information Systems and E-
Business Management, 7(4), 407-427.

Gu, Z., Li, J., and Xu, B. (2008). "Automatic
service composition based on
enhanced service dependency
graph," Proceedings of the IEEE
International Conference on Web
Services (ICWS'08).

Gudgin, M., Hadley, M., Mendelsohn, N.,
Moreau, J. J., and Nielsen, H. F.
(2007). " SOAP Version 1.2 Part 1:
Messaging Framework," Retrieved
from
http://www.w3.org/TR/2007/REC-
soap12-part1-20070427/, on May 21,
2014.

Jagadish, H., Lakshmanan, L., Srivastava, D.,
and Thompson, K. (2001). "TAX: A
tree algebra for XML," Proceedings of
the the 8th International Workshop on
Database Programming Languages
(DBPL'01).

Jordan, D., and Evdemon, J. (2007).
"Business Process Execution
Language for Web Services Version
2.0," Retrieved from
http://docs.oasis-
open.org/wsbpel/2.0/CS01/wsbpel-
v2.0-CS01.pdf, on May 21, 2014.

Lecue, F., Salibi, S., Bron, P., and Moreau, A.
(2008). "Semantic and syntactic data
flow in Web service composition,"
Proceedings of the IEEE International
Conference on Web Services
(ICWS'08).

Li, X., Madnick, S. E., and Zhu, H. (2013). "A
Context-Based Approach to

Reconciling Data Interpretation
Conflicts in Web Services
Composition," ACM Transations on
Internet Technology, 13(1), 1-27.

Liang, Q. A., and Su, S. Y. W. (2005).
"AND/OR graph and search algorithm
for discovering composite Web
services," International Journal of
Web Services Research, 2(4), 48-67.

Liang, T.P. (1988). "Model Management for
Group Decision Support," MIS
Quarterly(December), 667-680.

Liang, T.P., and Jones, C. V. (1988). "Meta-
Design Considerations in Developing
Model Management Systems,"
Decision Sciences, 19(1), 72-92.

Lucchi, R., and Mazzara, M. (2007). "A Pi-
calculus based semantics for WS-
BPEL," Journal of Logic and Algebraic
Programming, 70(1), 96-118.

Magnani, M., and Montesi, D. (2006). "A
unified approach to structured and
XML data modeling and
manipulation," Data & Knowledge
Engineering, 59(1), 25-62.

McDermott, D. (2002). "Estimated-regression
planning for interactions with Web
Services," Proceedings of the the 6th
International Conference on Artificial
Intelligence Planning Systems.

Mrissa, M., Ghedira, C., Benslimane, D.,
Maamar, Z., Rosenberg, F., and
Dustdar, S. (2007). "A context-based
mediation approach to compose
semantic Web services," ACM
Transactions on Internet Technology,
8(1), Article 4.

Nagarajan, M., Verma, K., Sheth, A. P., and
Miller, J. A. (2007). "Ontology driven
data mediation in web services,"
International Journal of Web Services
Research, 4(4), 104-126.

26

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

46

Narayanan, S., and McIlraith, S. A. (2002,
2002). "Simulation, verification and
automated composition of Web
services," Proceedings of the the 11th
International Conference on World
Wide Web.

OMG. (2013). "Business Process Model and
Notation Version 2.0," Retrieved from
http://www.omg.org/spec/BPMN/2.0.2
/, on May 21, 2014.

Ouyang, C., Verbeek, E., Van Der Aalst, W.
M. P., Breutel, S., Dumas, M., and Ter
Hofstede, A. H. M. (2007). "Formal
semantics andanalysis of control flow
in WS-BPEL," Science of Computer
Programming, 67(2-3), 162-198.

Paganelli, F., and Parlanti, D. (2013). "A
Dynamic Composition and Stubless
Invocation Approach for Information-
Providing Services," IEEE
Transactions on Network and Service
Management, 10(2), 218-230.

Park, C.-S., and Park, S. (2008). "Efficient
execution of composite Web services
exchanging intensional data,"
Information Sciences, 178(2), 317-
339. doi: 10.1016/j.ins.2007.08.021

Pistore, M., Traverso, P., and Bertoli, P.
(2005). "Automated composition of
Web services by planning in
asynchronous domains," Proceedings
of the the 15 International Conference
on Automated Planning and
Scheduling.

Sirin, E., Parsia, B., Wu, D., Hendler, J., and
Nau, D. (2004). "HTN planning for
Web service composition using
SHOP2," Web Semantics: Science,
Services and Agents on the World
Wide Web, 1(4), 377-396.

Sloan, J. C., and Khoshgoftaar, T. M. (2009).
"From Web service artifact to a
readable and verifiable model," IEEE

Transactions on Services Computing,
2(4), 277-288.

Spohrer, J., and Kwan, S. (2009). "Service
Science, Management, Engineering,
and Design: An Emerging Discipline--
Outline and References," International
Journal of Information Systems in the
Service Sector, 1(3), 1-31.

Srivastava, U., Munagala, K., Widom, J., and
Motwani, R. (2006). "Query
optimization over web services,"
Proceedings of the the 32nd
International Conference on Very
Large Data Bases.

Tan, W., Fan, Y., and Zou, M. (2009). "A Petri
net-based method for compatibility
analysis and composition of Web
services in Business Process
Execution Language," IEEE
Transactions on Automation Science
and Engineering, 6(1), 94-106.

Thomas, E. (2007). SOA principles of service
design: Prentice Hall PTR, Upper
Saddle River, NJ.

Ullman, J. D. (1989). Query optimization for
database systems Principles of
Database and Knowledge-Base
Systems (Vol. 2, pp. 633-725):
Computer Science Press.

Xia, Y.-M., and Yang, Y.-B. (2013). "Web
Service Composition Integrating QoS
Optimization and Redundancy
Removal," Proceedings of the 2013
IEEE 20th International Conference
on Web Services (ICWS'13).

Zeng, L., Ngu, A., Benatallah, B., Podorozhny,
R., and Lei, H. (2008). "Dynamic
composition and optimization of Web
services," Distributed and Parallel
Databases, 24(1), 45-72.

Zou, G., Gan, Y., Chen, Y., and Zhang, B.
(2014). "Dynamic Composition of Web
Services Using Efficient Planners in

27

Lee and Hwang: WS-Data Model: A Data Model for Web Services Composition and Opti

Published by AIS Electronic Library (AISeL), 2014

http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/

www.manaraa.com

WS-Data Model: A Data Model for Web Services Composition and Optimization/ Lee and Hwang

Pacific Asia Journal of the Association for Information Systems Vol. 6 No. 2, pp.20-47 / June 2014

47

Large-Scale Service Repository,"
Knowledge-Based Systems, 62(0),
98-112.

About the Authors
Chien-Hsiang Lee is currently a technical
consultant at Galaxy Software Services in
Taiwan. He received the B.Sc. and MBA
degrees from National Chiao Tung University
in Taiwan and Ph. D. from the Department of
Information Management at National Sun Yat-
Sen University in Taiwan in 2012. His current
research interests include Web services,
service-oriented architecture, and service
science.

San-Yih Hwang received the B.Sc. and M.Sc.
degrees from National Taiwan University,
Taiwan, and the Ph.D. degree from the
University of Minnesota, Minneapolis in 1994,
all in computer science. He joined the
Department of Information Management at
National Sun Yat-sen University, Taiwan, in
1995 and is presently a professor. His current
research interests include services computing,
workflow management, data mining, and
recommendations.

28

Pacific Asia Journal of the Association for Information Systems, Vol. 6, Iss. 2 [2014], Art. 2

https://aisel.aisnet.org/pajais/vol6/iss2/2
DOI: 10.17705/1pais.06202

	Paper Title (use style: paper title)

